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Abstract—Operationally simplified and high yielding methods for the preparation of N,N �-bis(benzyloxycarbonyl)-1-L-cysteinyl-
glycyl-3-dimethylaminopropylamide disulfide, an alternative substrate for trypanothione reductase, and a structural analogue,
using polymer-supported reagents are described. © 2002 Elsevier Science Ltd. All rights reserved.

N,N � - Bis(benzyloxycarbonyl) - 1 - L - cysteinylglycyl - 3-
dimethylaminopropylamide disulfide 1 is a known alter-
native synthetic substrate for the anti-oxidative enzyme
trypanothione reductase (TryR).1 Unlike the natural
substrate trypanothione disulfide 2, compound 1 has
been used as a basis for non-reducible inhibitors of
TryR.2 Compound 1 has been synthesised, in 46%
overall yield, using solution phase chemistry.1 In spite
of the few steps involved in the reported synthesis of 1,
the isolation and purification of the products required
laborious and time-consuming chromatography.

In this letter we report operationally simplified and high
yielding methods for the synthesis of 1 and its analogue
3 using polymer-supported reagents, 2% crosslinked
polystyrene beads containing di-imide residues 4,3

macroporous polystyrene anion-exchange beads con-
taining quaternary ammonium salt moieties 5 in the
carbonate form4 and 2% crosslinked polystyrene beads
containing N,N-dialkylaminopyridine residues 6.5

The synthesis of 1 was executed as depicted in Scheme
1.

The starting point for the synthesis of 1 was the cou-
pling reaction of 7 (prepared from glycine and benzyl
chloroformate) and 3-N,N-dimethylaminopropylamine
according to the literature procedure.3 Activation of the
carboxyl group of 7 by P-EDC 4 in the presence of
3-N,N-dimethylaminopropylamine gave 8 in high yield
after filtration. Removal of the benzyloxycarbonyl
(Cbz) group by catalytic hydrogenation gave 9 in quan-
titative yield after filtration. Coupling of 9 and cystine
derivative 10 in the presence of 4 and 1-hydroxybenzo-
triazole (HOBT), followed by removal of HOBT using
5 as a scavenger6 and filtration gave 1 in 72% overall
yield.7

A similar strategy was employed for the synthesis of
analogue 3 (Scheme 2). The starting point was the
preparation of 12 using the coupling conditions
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Scheme 1. Reagents and conditions : (a) 2.5 equiv. of 4, 1.0
equiv. of H2N(CH2)3N(CH3)2, CHCl3, 25°C, 16 h, filtration,
91%; (b) 10% Pd/C, H2, MeOH, 25°C, 2 h, filtration, 100%;
(c) 2.5 equiv. of 4, 1.0 equiv. of HOBT, CHCl3, 25°C, 16 h,
then 3.0 equiv. of 5, CH2Cl2, 25°C, 3 h, filtration, 79%.

employed in the last two steps for the synthesis of 1.
Compound 12 was treated with acetyl chloride in the
presence of the acylation catalyst 6 to furnish 13, which
was subjected to catalytic hydrogenation to afford 14 in
quantitative yield after filtration. In a similar fashion 14
was coupled with cystine derivative 10 to give 3 in 69%
overall yield.7

In conclusion our strategy for the synthesis of 1 and its
analogue 3 using polymer-supported reagents proved to
be superior in terms of simplicity, efficiency and yields
in comparison to the reported solution phase synthesis.1

Coupled with the reported solid-phase syntheses of the
natural substrate,8–10 our approach to the synthesis of 1
should provide options for synthesising these disulfides
and related compounds.

General procedure for amide bond formation and removal
of HOBT. To a suspension of 4 [1.0 mmol of
chloromethylated poly(styrene-co-divinyl benzene), 2%
crosslinked, 1.4 mmol/g loading capacity] in chloroform
(10 ml), the acid (0.44 mmol) and amine (0.4 mmol)
were added. The reaction mixture was shaken for 24 h
at room temperature and then filtered. The resin was
washed with chloroform (3×5 ml) and the combined
filtrate was concentrated under reduced pressure. The
residue was re-dissolved in dichloromethane and then 5
[0.88 mmol of macroporous poly(styrene-co-divinyl
benzene), anion-exchange resin, 2.64 mmol/g loading
capacity] was added. The resultant mixture was shaken
at room temperature for 2 h, filtered, washed with
dichloromethane (3×5 ml) and concentrated to give the
product.
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